
Probabilistic Specification Learning for Planning
with Safety Constraints

Kandai Watanabe1, Nicholas Renninger2, Sriram Sankaranarayanan1, and Morteza Lahijanian1.

Abstract— This paper proposes a framework for learning
task specifications from demonstrations, while ensuring that
the learned specifications do not violate safety constraints.
Furthermore, we show how these specifications can be used in a
planning problem to control the robot under environments that
can be different from those encountered during the learning
phase. We formulate the specification learning problem as a
grammatical inference problem, using probabilistic automata to
represent specifications. The edge probabilities of the resulting
automata represent the demonstrator’s preferences. The main
novelty in our approach is to incorporate the safety property
during the learning process. We prove that the resulting
automaton always respects a pre-specified safety property, and
furthermore, the proposed method can easily be included in
any Evidence-Driven State Merging (EDSM)-based automaton
learning scheme. Finally, we introduce a planning algorithm
that produces the most desirable plan by maximizing the
probability of an accepting trace of the automaton. Case studies
show that our algorithm learns the true probability distribution
most accurately while maintaining safety. Since, specification
is detached from the robot’s environment model, a satisfying
plan can be synthesized for a variety of different robots and
environments including both mobile robots and manipulators.

I. INTRODUCTION

Autonomous robots make decisions against varying envi-
ronments while maintaining key safety properties in domains
such as deep-sea and space exploration; assistive and service
domains (e.g., human-shared assembly lines); and surgical
robotics. As robots are getting more autonomous, they are
also expected to perform more complex tasks. Often times,
however, the explicit and precise specifications of such tasks
are unavailable, or too cumbersome to be provided by non-
experts. However, these tasks can be easily demonstrated
through various means – demonstrations through human
operation or data collected from past manual operations.
Given such demonstrations, the robot needs to be able to infer
the task specification, so that it may autonomously satisfy
the specification even against varying environments. In this
regard, we identify four key challenges: (a) identifying a
rich specification formalism that permits efficient and precise
learning algorithms from the given demonstrations; (b) en-
suring that key safety properties are satisfied by the resulting

This work was supported in part by the University of Colorado Boulder
Autonomous Systems Interdisciplinary Research Theme; NSF award num-
bers 1932189 and 1836900; JASSO Overseas Graduate Fellowship and Keio
University Global Fellowship.

1Authors are with the Departments of Computer Science and Aerospace
Engineering Sciences at University of Colorado Boulder, Boulder, Colorado.
{first.lastname}@colorado.edu

2Author is with MITRE Corporation. This work was done while he was
a student in the Dept. of Aerospace Engineering Sciences at University of
Colorado Boulder. nicholas.renninger@colorado.edu

Fig. 1: Schematic of an autonomous deep-sea science mission.

specification; (c) capturing “operator preferences” or “hidden
costs” from the demonstrations; and (d) using the specifica-
tions to guide autonomous behavior under environments that
may be different from those under which the demonstrations
were provided. In this paper, we propose solutions to all
four problems using the framework of probabilistic automata
learned using grammatical inference. We focus on safety-
property constrained learning: wherein the final learned
specification must satisfy the safety properties. Our proposed
learning approach ensures that the safety properties constrain
the intermediate steps of the learning algorithm as opposed
to an “after-the-fact” approach wherein the safety properties
are intersected with the final specifications to rule out any
unsafe behavior. We show that our safety-enabled learning
approach clearly outperforms the after-the-fact approach.

For example, consider an underwater robot in a deep-sea
science mission as schematically illustrated in Figure 1. The
scientists want the robot to explore a shipwreck on the sea-
floor, study the behavior of a school of fish, while keeping
away from the dangerous coral reefs. The goal of this work is
to enable autonomous execution of this task by just exposing
the robot to demonstrations from tele-operations or from
related past missions. From these demonstrations, the robot
should be able to infer the task and generate the necessary
plan to accomplish it. We call this problem Specification
Learning from Demonstrations, which can be regarded as
a new form of Learning from Demonstration (LfD) [1].

Many LfD studies focus on either learning a policy or a
reward structure [1], [2]. For policy learning, techniques such
as reinforcement learning (RL) [3] and Dynamic Movement
Primitives [4], [5] are typically used to learn a function that
maps agent states to actions. In reward learning, a scalar
reward function that maps agent states to rewards is learned
via, e.g., inverse reinforcement learning (IRL) [6]–[9], to
later train a policy on an agent. While very powerful, these
methods learn a function that is specific to the environment
(and robot) model used during training and hence are fragile
to the changes to those models. More importantly, those
methods are restricted to Markovian tasks. For example, the

robot task in Figure 1, which requires a visit to both the
shipwreck and school of fish in any order, is non-Markovian.
To achieve it, the robot has to maintain a memory of previous
locations to decide the next location to visit. Hence, it is
important to enable LfD for non-Markovian tasks, but such
an extension is nontrivial for the existing LfD methods.

An alternative approach to expressing tasks is to use
formal languages such as linear temporal logic (LTL) [10],
which is widely used in formal verification and increasingly
employed in robotics in recent years, e.g., [11]. Such lan-
guages enable formal expression of rich missions, including
non-Markovian tasks [12] as well as liveness (“something
good eventually happens”) and safety (“something bad never
happens”) requirements. Other important benefits of formal
languages is in their ease of interpretability and flexibility
to compose multiple specifications. Such benefits have even
led to their use in RL, e.g., [13]–[15]. Nevertheless, writing
correct formal specifications requires domain knowledge.

In recent years, a new line of research has emerged with
a focus on learning formal specifications from data [12],
[16]–[19]. Most work has been concerned with learning
temporal logic formulas with the purpose of classification
and prediction from user data (in the supervised learning
sense) [17], [18] or interpretation and planning for tasks
[19]. Those studies restrict the exploration problem to a set
of formula templates provided a priori. Recent work [12]
overcomes this restriction by iterating over all combinations
of formulas. The method is based on maximum a posterior
learning and can account for noisy samples. It however is
slow due to the large space of exploration for formulas.
Another important issue with formula learning methods for
the purpose of planning is that they typically need to be
translated to an automaton, which could lead to the state-
explosion problem [10], [11]. Work [20] overcomes this issue
by directly learning a Deterministic Finite Automaton (DFA).
They however assume the structure of the DFA is known and
only learn the transitions between the DFA states while an
oracle labels each sample with DFA states.

In this work, we propose a new approach to task speci-
fication learning where we infer formal task specifications
as probabilistic automata. Our approach used ideas from
the field of grammatical inference (GI) [21], by modifying
existing “evidence-driven state merging” algorithms in GI
to learn the specification as a Probabilistic Deterministic
Finite Automaton (PDFA). We further extend this method to
incorporate safety properties during the learning process, so
that all runs of the final PDFA satisfy the safety properties.
Furthermore, we propose a planning algorithm with the
inferred PDFA that generates the most preferred plan to
achieve the task for any robot that can be abstracted to a
deterministic transition system.

To the best of our knowledge, this is the first work that
employs PDFA as a learning model for task specifications
in robotics. The key technical contributions include: (a) the
derivation of the safety guaranteed PDFA learning algorithm
that is compatible with any EDSM techniques; (b) a planning
algorithm with a learned PDFA that can handle varying

environments; and (c) a set of experiments that show the
efficacy of the proposed algorithms in both mobile and
manipulator robots. We also provide a comparison case study
against [12] to highlight the similarities and differences
between the two approaches.

II. PROBLEM FORMULATION

In this section, we describe and formalize our problem
of task specification learning with preferences and safety
constraints. Our aim is to use an interpretable learning model
that we can use for planning for a robot to perform the task
according to the user’s preferences.

A. Task Specifications and demonstrations

We assume the demonstrator has a task in mind that needs
to be achieved in finite time. Our goal is to learn this task in
the form of a deterministic finite state automaton (DFA) that
reflects the overall goals of the demonstrator. Such automata
accommodate a large class of tasks, including the ones that
can be specified using co-safe LTL [22] and LTL over finite
traces [23] formulas. Nevertheless, to avoid a trivial solution
to the problem (e.g., a trivial specification that accepts all
possible behaviors), we consider two important caveats.
• We specify, on the side, a safety property specification

that the robot must not violate. The safety property char-
acterizes a potentially infinite set of negative examples
for our learner consisting of those specifications that
violate the safety property.

• We want to encode the demonstrator’s preferences be-
tween various ways of satisfying an intended specifica-
tion. For instance, a demonstrator may prefer to avoid a
collision with an obstacle by steering left preferentially
since it may position the vehicle to avoid a future
collision with less effort.

Below, we define the mathematical machinery needed to
formalize this problem.

For a given task ϕtask, let Π = {p1, ..., pk} be a set
of atomic propositions (boolean predicates) that represent
important facts about the world that is relevant to the task.
The set of atomic propositions that is true at a state of the
world is called a symbol. The set of all symbols is denoted
by Σ. Note that Σ = 2Π. A demonstration ω (also known
as a trace or word) is a finite sequence of symbols, i.e.,
ω = ω1ω2 . . . ωn, where ωi ∈ Σ for all 1 ≤ i ≤ n.

From demonstrations, we want to learn task ϕtask. How-
ever, instead of directly learning it as a temporal logic
formula, our goal is to learn it in the form of a DFA.

Definition 1 (DFA). A deterministic finite automaton (DFA)
is a tuple A = (Q,Σ, q0, δ, F), where
• Q is a finite set of states,
• Σ is a finite set of input symbols,
• q0 ∈ Q is the initial state,
• δ : Q× Σ→ Q is the transition function, and
• F ⊆ Q is the set of final or accepting states.

The transition function δ can be also viewed as a relation
δ ⊆ Q×Σ×Q, where every transition is a tuple (q, σ, q′) ∈ δ

iff q′ = δ(q, σ), where σ ∈ Σ. A run of a DFA A on trace
ω = ω1ω2 . . . ωn is a sequence of states z = z0z1 . . . zn,
where z0 = q0 and zi = δ(zi−1, ωi) for i = 1, . . . , n. A run
z is called accepting if zn ∈ F . A trace ω is accepted by
A if it induces an accepting run. The set of all traces that
are accepted by DFA A is called the language of A and is
denoted by L(A).

We call a demonstration ω valid if it is accepted by the
DFA that represents ϕtask, i.e., achieves task ϕtask.

Definition 2 (Valid Demonstration). A valid demonstration
for task ϕtask is a finite trace ω ∈ Σ∗ such that ω ∈ L(Aϕtask),
where Aϕtask is the DFA that represents ϕtask.

B. Safety Specification

To express the safety constraints, we use safe LTL [22].

Definition 3 (Safe Syntax). A syntactically safe LTL formula
over Π is recursively defined as

ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Gϕ

where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (con-
junction) are boolean operators, and X (“next”) and G
(“globally”) are temporal operators.

Safe LTL formulas reason over infinite traces, but finite
traces are sufficient to violate them [22]. We denote the set
of finite traces that violate safety formula ϕsafe by L(¬ϕsafe).
Hence, given valid demonstrations and safety formula ϕsafe,
we want to learn a DFA Ãϕtask such that it does not accept
any trace that violates safety, i.e, L(Ãϕtask)∩L(¬ϕsafe) = ∅.

C. Preferences

On the learned DFA, we also want to encode the prefer-
ences of the demonstrator. We assume that the preferences
are correlated with the number of demonstrations of the same
trace. Hence, preferences can be quantified as weights over
traces and normalized over the entire language, which can
be viewed as a probability distribution over L(Aϕtask). The
higher the probability of an accepting trace is, the more
preferred it is to the demonstrator. Hence, our aim is to
learn a probabilistic DFA (PDFA), which captures both the
accepting traces and their corresponding probabilities.

Definition 4 (PDFA). A probabilistic DFA (PDFA) is a tuple
AP = (A, δP, FP), where A is a DFA, and δP : δ → [0, 1]
assigns a probability to every transition in δ such that∑
σ∈Σ δP(q, σ, δ(q, σ)) = 1 for every q ∈ Q, and FP : Q→

[0, 1] assigns a probability of terminating at each state, where
FP(q) = 0 if q 6∈ F .

Consider trace ω = ω1ω2 . . . ωn and its induced run z =
z0z1 . . . zn on PDFA AP. The probability of ω is given by

P (ω) =

n∏
i=1

δP(zi−1, ωi, zi) · FP(zn).

We say AP accepts ω iff P (ω) > 0, and the demonstrator
prefers ω over ω′ ∈ (2Π)∗ iff P (ω) > P (ω′). The language

of AP is the set of traces with non-zero probabilities, i.e.,

L(AP) = {ω ∈ (2Π)∗ | P (ω) > 0}.

Therefore, our goal becomes to learn a ÃP
ϕtask that cap-

tures the task ϕtask, the demonstrator’s preferences (proba-
bility distribution over traces), and never violates ϕsafe.

D. Robot Model and Plans

Once a specification is learned, we want to synthesize
a plan for a robot that can realize the specification. To
do so, we assume that we are given an abstraction model
of the robot as a deterministic transition system. Such an
abstraction is commonly used and constructed in formal
approaches to both mobile robotics [11], [24], [25] and
robotic manipulators [26], [27].

Definition 5 (DTS). A deterministic transition system (DTS)
is a tuple T = (X,A, x0, δT ,Π, L), where
• X is a finite set of states,
• A is a finite set of controls or actions,
• x0 ∈ X is the initial state,
• δT : X ×A→ X is the (partial) transition function,
• Π is a finite set of atomic propositions (predicates), and
• L : X → 2Π is a labeling function that maps each state

to the set of predicates that are true at that state.

A plan γ = γ0γ1 . . . γn−1 is a sequence of actions, where
γi ∈ A for all 0 ≤ i ≤ n − 1. By executing γ, the robot
generates a trajectory s = s0s1 . . . sn, where s0 = x0 and
si+1 = δT (si, γi). A valid plan is plan γ that respects the
transition function δT , i.e, δT (si, γi) exists for all 0 ≤ i ≤
n− 1. We denote the set of all valid plans by Γ.

The observation trace of the above trajectory is the se-
quence of observed labels, i.e., ργ = L(s0)L(s1) . . . L(sn).
We refer to the set of all observation traces that a robot can
generate as the language of T , i.e., L(T) = {ργ | γ ∈ Γ}.

In the planning problem, we are interested in a plan γ that
generates an observation trace ργ that achieves task ϕtask and
is the most preferred behavior, i.e.,

ργ = arg max
ω∈L(ϕtask)∩L(T)

P (ω).

E. Problem

We are now able to formally define our problem.

Problem. Given demonstrations Ω = [ωi]
nΩ
i=1 that are sam-

pled from a hidden task specification DFA Aϕtask according
to some preferences (probability distribution) of the demon-
strator and a safety specification ϕsafe,:

1) learn ϕtask and the demonstrator’s preferences as a
PDFA ÃP

ϕtask such that safety is never violated, i.e,
L(ÃP

ϕtask) ∩ L(¬ϕsafe) = ∅;
2) furthermore, given a DTS robot model T , compute a

plan for the robot T that generates the most preferred
behavior that satisfies ϕtask, i.e, generates the trace with
the highest probability in L(ÃP

ϕtask) ∩ L(T).

For Problem 1, we use grammatical inference [21] while
incorporating the safety property during the learning process,

s0

s1 s2

a4

c
2

c1

a 2 b 2

t0 : 5

t1 : 4 t5

t6 : 3 t9 t10

t12 : 2 t13 t14 t15

a c

a c b

a c b b

t0 : 5

t1 : 4 t5,9 : 2

t6 : 3 t10,13,14 : 3

t12 : 2 t15 : 1

a c

a b

c

c

a b

Fig. 2: Schematic illustration of evidence-driven state merging
(EDSM) algorithm. (Left) A frequency prefix tree acceptor (FPTA)
is constructed from the given demonstrations with frequencies
greater than 1 shown in red; (Middle) intermediate automaton as
states are merged according to criteria that differ across various
algorithms with frequencies shown at each node; and (Right) the
final frequency DFA (FDFA) that is learned is shown in red.

as described in Section III. We use this PDFA to solve
Problem 2 as detailed in Section IV.

III. SAFETY GUARANTEED PDFA LEARNING

In this section, we explain how a PDFA can be learned
from demonstrations and present our method that can embed
safety specification to guarantee safety on the outcome. We
first show a general PDFA learning algorithm, and then we
describe our algorithms to incorporate safety.

A. Grammatical Inference: PDFA Learning

PDFA learning has been extensively studied as part of
grammatical inference (GI) with existing algorithms such as
ALERGIA, DSAI, and MDI, that can learn PDFAs from un-
labeled demonstrations [21]. These algorithms are all based
on a principle called evidence-driven state-merging (EDSM).
At a high level, EDSM approaches find an appropriate
structure for an automaton AP and simultaneously estimate
the probability distribution parameters FP and δP given a
set of sample traces. This is achieved by first constructing a
large (prefix) tree from the samples, and repeatedly merging
the states of the tree in order to form an automaton that is
as simple as possible while continuing to accept the sample
traces from the demonstration. The various algorithms (e.g.,
ALERGIA and MDI) differ on what states are merged.

Figure 2 shows a general scheme for an EDSM-based
algorithm for learning a PDFA. The initial step is to construct
a frequency prefix tree acceptor (FPTA) from the traces in
Ω (Fig. 2-Left) and then incrementally merge states of the
FPTA, two at a time, based on a compatibility criterion that
varies depending on the actual algorithm. As two states are
merged, so are their subtrees in the FPTA (Fig. 2-Middle).
The nodes of the intermediate automata are variously colored
red/blue using a coloring scheme to influence how states are
selected for merging. Furthermore, algorithms also maintain
frequencies alongside the nodes based on the number of
demonstration traces that reach a particular node. These
frequencies are also combined during the state merging
process. The final result is a frequency DFA (FDFA) wherein
frequencies along edges indicate how often they are taken

by a demonstration (Fig. 2-Right). The frequencies of all
outgoing edges are normalized to yield a distribution.

The various PDFA learning algorithms such as ALERGIA
or MDI differ on how they implement the compatibility check
for whether two given nodes can be merged. For instance,
the ALERGIA algorithm implements a statistical test based
on frequencies to compare if two states are compatible,
whereas the MDI approach first temporarily merges two
states and their subtrees, while accepting the merge if a
metric computed on automaton after the merge is smaller
than that before the merge. We assume that the basic PDFA
learning algorithm as a given, and our goal is to learn while
respecting a safety property.

B. Learning with Safety Specification

We now consider two different approaches for learning
with a safety specification. The first method is a post-
processing technique that simply runs the PDFA learning
algorithm on the given demonstration traces and then sub-
sequently intersects the resulting PDFA with the automaton
for the safety property. The second method incorporates the
safety specification during the learning process by modifying
the EDSM algorithm. In particular, the merges are defined so
that the result continues to satisfy the safety specifications.

1) Post-process Algorithm: From ϕsafe, we first con-
struct a DFA A¬ϕsafe that accepts precisely all those traces
that violate the safety property [22]. Then, by comple-
menting A¬ϕsafe , we obtain Asafe = (Qs,Σ, qs0, δ

s, F s)
that accepts all the traces that do not violate ϕsafe. Let
AP = (Q,Σ, q0, δ, F, δP, FP) be the PDFA learned from
the given demonstration traces without considering the
safety property. We intersect the languages of AP and
Asafe by constructing a product automaton AP

safe = AP ⊗
Asafe = (Qsafe,Σ, q0,safe, δsafe, Fsafe, δP,safe, FP,safe), where
Qsafe = Q×Qs, q0,safe = (q0, q

s
0), Fsafe = F × F s,

δsafe((q, q
s), σ) = (q′, qs′) if q′ = δ(q, σ) ∧ qs′ = δs(qs, σ),

FP,safe((q, q
s)) = FP(q), and

δP,safe((q, q
s), σ, (q′, qs′)) =

δP(q,σ,q′)
N(q,qs) if (q′, qs′) =

δsafe((q, q
s), σ)

0 otherwise

(1)

where N(q, qs) is the normalizing function such that∑
(σ,q′safe)∈(Σ×Qsafe)

δP,safe((q, q
s), σ, q′safe) = 1. The resulting

PDFA is guaranteed to be safe due to the intersection of lan-
guages. However, this method of pruning (imposing safety)
as a post-process step alters the probability distributions over
the next-state transitions, since we remove the transitions that
violate safety and renormalize the probability distribution at
each state, as shown in (1). This overrides the probability
distributions constructed by the original PDFA learning al-
gorithm in an unpredictable manner. Therefore, while this
method of imposing safety always succeeds, its probability
distributions may not reflect the preferences embedded in the
demonstrations accurately.

2) Safety-Incorporated Learning Algorithm using “Pre-
Processing”: Whereas the post-processing approach en-
forces safety after the PDFA is learned, the pre-processing
approach guarantees that the intermediate results also pre-
serve safety, hence preventing alterations to the probability
distributions due to unsafety. The main idea is to build the
PDFA that generalizes the demonstrated traces but carries
along with it information about how the generalization
satisfies the safety property ϕsafe at the same time in the
form of a simulation relation with Asafe.

Definition 6 (Simulation Relation). A simulation relation R
between two automata A and B is a relation between their
states, R ⊆ QA ×QB
(a) Initial states of A relate to the initial states of B;
(b) If pair (s, t) ∈ R, where s ∈ QA and t ∈ QB, and

automaton A can transition from s to s′ ∈ QA on
symbol σ, then there must exist a state t′ ∈ QB such
that automaton B transitions from t to t′ on the same
symbol σ and (s′, t′) ∈ R;

(c) For each (s, t) ∈ R, if s is final in A then t must be
final in B.

Theorem 1. Let R be a simulation relation between au-
tomata A and B. It follows that L(A) ⊆ L(B).

The proof simply shows by induction that for any accept-
ing run corresponding to an input trace ω in automaton A
from the initial state to a final state, there exists an accepting
run in B for the same trace ω from its initial state to the final
state. The relation R allows us to construct such a run.

The key idea behind the pre-process approach is to main-
tain a simulation relation between the FDFA and safety
automaton Asafe at all intermediate states. The key is to
restrict the merging of states so that we can guarantee that a
simulation relation between the original automaton and Asafe
before merging can be modified to yield a simulation relation
between the merged automaton and Asafe afterwards.

Formally, we build the safety FPTA by augmenting the
initial FPTA so that each state is now a tuple of the form
(tj , sk) wherein tj is a node in the original FPTA and sk
is the state in Asafe reached when the prefix that leads upto
the state tj is run through Asafe. Thus, we ensure that every
branch not only corresponds to a demonstration but also to
a valid trace in Asafe.

Let R be a relation between states of the FPTA and Asafe
that contains all nodes (tj , sk) in the safety FPTA.

Lemma 1. Assuming no demonstration trace violates the
safety property ϕsafe, then R is a simulation relation between
the initial FPTA and the automaton Asafe.

We can represent any intermediate FDFA state in the form
(T, s) wherein T is a set of states from the initial FPTA, and
s is state in Asafe. Next, we modify the EDSM approach to
allow a merge between two states (Ti, sk) and (Tj , sl) only if
sk = sl. The result of the merge creates a state (Ti∪Tj , sk).

Lemma 2. Let A1 and A2 be the automata before and after
an EDSM merge that is compatible with respect to the Asafe

states. Let R1 be the relation between the states of A1 and
those of Asafe that is a simulation relation. We can construct
a simulation relation R2 between the states of A2 and Asafe.

Combining Lemmas 1 and 2, we conclude by induction
on the number of merging steps that the final resulting PDFA
must have a simulation relation to the safety automaton Asafe.
Since we have a simulation relation, we conclude that the
language of the final resulting FDFA and PDFA are contained
in the that of Asafe, i.e., the resulting PDFA does not accept
a trace that violates ϕsafe.

IV. PLANNING WITH PDFA

Once a task is learned as a PDFA, we are interested in
synthesizing a plan that not only achieves the task but also
respects the demonstrator’s preferences (Problem 2). Here,
we introduce a method to do this for any robot with a DTS
(abstract) model. We first construct a (product) graph that
captures all the ways the robot can achieve the task by
composing the DTS with the learned PDFA. Then, we reduce
the optimal planning problem to a search on this graph.

The plans are computed over the product graph P = AP×
T̄ , where T̄ is a DTS obtained by augmenting T with a
new initial state x̄0 with a transition to x0. Formally, T̄ =
(X̄, A, x̄0, δT̄ ,Π, L), where X̄ = X ∪{x̄0}, and δT̄ (x, a) =
x0 if x = x̄0, otherwise δT̄ (x, a) = δT (x, a) ∀a ∈ A. This
augmentation allows to correctly observe the label of x0 and
assign the edge weights in P according to the probabilities
in AP through the product rule below. Given learned AP =
(Q,Σ, q0, δ, F, δP, FP) and T̄ , we construct weighted product
graph P = (QP , qP0 , E,W), where
• QP = (Q× X̄) ∪ {qPt } is a set of states, where qPt is

the terminal state,
• qP0 = (q0, x̄0) is the initial state,
• E ⊆ QP ×QP is a set of edges, and
• W : E → R<0 is a weight function that assigns to each

edge e ∈ E a weight according to its probability in AP.
The constructions of E and W are as follows.
• Edge e = ((q, x), (q′, x′)) ∈ E if q′ = δ(q, L(x′))

and x′ = δT̄ (x, a) for some a ∈ A. Then,
W ((q, x), (q′, x′)) = log(δP(q, L(x′), q′)).

• Edge e = ((q, x), qPt)) ∈ E if FP(q) > 0. Then, its
weight W ((q, x), qPt) = log(FP(q)).

Product graph P captures the constraints of both the
robot and task along with the demonstrator’s preferences.
Let λ = (q0, x̄0)(q1, x0) . . . (qn, xn−1)qPt be a path over P .
The projection of this path (with the deletion of qPt) onto
AP is an accepting run with the trace ω = ω1 . . . ωn. The
projection of λ on T is the robot trajectory that generates
the accepting trace ω. The probability of this trace is in fact
the inverse logarithm of the total weight of λ, i.e.,

n∑
i=0

W (λi, λi+1) =

n−1∑
i=0

log(δP(qi, qi+1)) + log(FP(qn))

= log
(n−1∏
i=0

δP(qi, qi+1) · FP(qn)
)

= log(P (ω)).

(a) Non-Markovian Task (b) Five demos from [12] (c) Synthesized Plan (d) Synthesized Plan
(e) Synthesized Plan for a diagonal-
moving robot

Fig. 3: Various environments and robots considered for the case studies. (a) Learning and planning for the non-Markovian task. (b)
Environment and demonstrations from [12]. (c)-(e) Synthesized plans (shown in red) based on the learned task from (b).

q0

q1 q2

q3

e:0.50
[0.49]

e:0.50
[0.48]

e:0.50
[0.48]

s:0.40
[0.40]

f:0.10
[0.10]

f:0.50
[0.52]

s:0.50
[0.52]

(a) PDFA for Fig. 3a

q0

q2

q3 q4

q5q6q7

q8

q1

e:0.76

g:
0.05

c:
0.05

w:
0.05

e:
0.25

w:
0.75

e:1.00

w:
0.33

e:0.33

c:1.00c:1.00

e:
1.00

g:
1.00

(b) Vanilla, α = 0.4, Fig. 3b.

q0

q1

e:0.57, c:0.14, w:0.17

g:0.12

(c) Vanilla, α = 4, Fig. 3b.

q0

q2

q3

q4

q1

e:0.56, c:0.16

g:0.16

w:0.09

w:0.57

e:0.43 e:0.43

c:0.43
c:0.67

(d) Pre-process, α = 4, Fig. 3b

Fig. 4: The task specification and the learned PDFAs for the scenarios in Fig. 3a and 3b. Each letter represents a symbol with a single
atomic proposition s={ship}, f={fish}, b={blue}, c={carpet}, g={green}, p={purple}, and e = ∅. The termination probability FP of
double-edged states is 1 and 0 at all other states.

Therefore, to compute a robot plan that produces an accept-
ing trace with the highest probability in L(AP)∩L(T), it is
enough to find a path on P that reaches the terminal state
qPt with the maximum total weight, i.e.,

arg max
ω∈L(AP)∩L(T)

P (ω) = PROJ
(

arg max
λ∈Λ

|λ|−1∑
i=0

W (λi, λi+1)
)
,

where Λ is the set of paths of P that terminate in qPt ,
and PROJ is the projection operator that maps λ to its
corresponding trace ω. Note that the all the edge weights of
P are negative, hence, it is a simple graph search problem
that can be performed using algorithms such as Dijkstra’s.

V. CASE STUDIES AND EVALUATIONS

We illustrate the performance of the proposed algorithms
in five case studies. Our implementation of the EDSM
algorithm is based on the MDI method that is used in the
flexfringe library [28]. We call the basic algorithm the Vanilla
algorithm. All the case studies were run on a MacBook Pro
with 2.3 GHz Dual-Core Intel Core i5 and 16 GB RAM.
Videos of all case studies are available to view1.

A. Learning and Planning for Non-Markovian Tasks

In this case study, we consider the robotic scenario in
Figure 1. The task is to visit both the school of fish and
the shipwreck in any order and always avoid coral reefs.
The preference is to visit the shipwreck first. A PDFA
representation of this specification is shown in Figure 4a.

To learn this task, we sampled 1000 traces from this
PDFA on the gridworld environment in Figure 1. From these

1https://youtu.be/TU8MhPBDBBs

demonstrations, the Vanilla algorithm learned a PDFA with
the same exact structure as the true PDFA and probabilities
within 0.02 of the true values (in square brackets in Fig. 4a).

As the PDFA shows, our method correctly learned the non-
Markovian task of visiting both the shipwreck and the school
of fish in both orders and favors going to the shipwreck
first. Using this PDFA, our planner generated the robot
trajectory shown in Figure 3a (top), which correctly visits the
shipwreck first and then the school of fish. Next, we changed
the environment by moving the location of the fish to be
on the robot’s way to the shipwreck as shown in Figure 3a
(bottom). This figure also shows the synthesized plan in this
environment using the same learned PDFA. Notice that the
robot is not visiting the shipwreck first due to environmental
constraint. Instead, it visits the fish and then the shipwreck,
which is also a correct behavior. This generality is the
strength of learning the specification rather than learning a
policy that is strongly dependent on the environment.

B. Learning from Small Number of Samples with Safety

In this case study, we consider the environment and five
demonstrations depicted in Figure 3b taken from [12] to learn
the specification in a form of a PDFA as a comparison to
the approach in [12], which is based on learning specification
formulas. In this gridworld, each color represents an object,
where orange is lava, blue is water, yellow is a drying carpet,
white is an empty space, and green is a charging station. The
task is to reach a charging station. However, the robot should
not charge while it is wet. That is, once it gets wet (goes to
water), the robot has to dry at the drying carpet.

1) Small number of samples: We first used the Vanilla
algorithm with the five demonstrations, which learned the

https://youtu.be/TU8MhPBDBBs

(a) L1 norm error (log scale) (b) Number of nodes (c) Computation time [s]

Fig. 5: Performance analysis for the proposed algorithm. Plots in (a)-(b) use the same legend as (c).

PDFA in Figure 4b. Note, in the learned PDFA, region green
(charging station) must always be observed to reach the
final state. This shows that the task of reaching the charging
station is learned correctly. Next, on the right most branch
of the PDFA, carpet is always observed when the robot gets
wet. Again, the algorithm succeeded in learning the task
of visiting carpet once the robots gets wet before reaching
the charging station. One interesting observation is that the
PDFA also learned that the robot has to go to the charging
station in one step after leaving the carpet. This is in fact
a bias in the samples since every shown demonstration that
includes carpet has this property. If that is the intention of
the demonstrator, then it is a correct behavior. If it is not,
then it can be resolved by providing more samples.

Such one-step bias is not apparent in [12] because the
“next” operator is not allowed in the syntax of the language
they consider. In contrary, our method infers over regular
language, which includes the next operator. Furthermore, in
[12], it took 95 seconds to learn the specification from just
5 demonstrations whereas ours took less than 0.01 seconds.

2) Hyperparamter choice and safety: The PDFA in Fig-
ure 4b is the result of the Vanilla algorithm when the hyper-
parameter of α is set to 0.4. It is a knob of how aggressive we
allow the merges. Higher the value of α is, the smaller the
PDFA becomes. If we can tune the hyperparameter correctly,
we can get a desirable result as described above. But, if
we increase α too much, some merges could induce unsafe
behavior. Unwanted merges occur because the algorithm is
simply trying to minimize the size of the structure. In fact,
the question of how to choose a correct value for α is an
open problem. For α = 4, the learned PDFA from the same
demonstrations is shown in Figure 4c. This PDFA has no
regards for safety and only requires to reach the charging
station. We can mitigate this problem by embedding safety
specification. We define the following safety formula:

ϕsafe = G¬lava ∧ G(water→ X (ϕ(¬charge, carpet, k))

where ϕ is a formula recursively defined as: ϕ(a, b, k) = a∧
(b∨X (ϕ(a, b, k−1))) and ϕ(a, b, 0) = a, and is read, “visit a
for k steps unless b is visited”. This formulas requires never
going to lava and, if the robot enters water, it cannot charge
unless it visits carpet or stays in empty for k consecutive
steps to get dry. We set k = 10 in all experiments.

From the same five demonstrations, we now learn PDFAs
using the Post-process and Pre-process algorithms with α =

4 subject to ϕsafe. The Post-process algorithm generates a
large PDFA with 13 nodes and 36 edges since the safety DFA
itself is large (12 nodes and 34 edges). Despite the size, it
always guarantees no violation to ϕsafe. The PDFA generated
by the Pre-process algorithm is shown in Figure 4d. It is
small and correctly embeds both safety and liveness. Further,
all the demonstrations are accepted by both learned PDFA.
As for probabilities, the average L1 norm error was 1.65×
10−3 for the Post-process PDFA and 7.42 × 10−5 for the
Pre-process PDFA, indicating better performance by the Pre-
process algorithm. The larger error in the probabilities of the
Post-process PDFA is due to the composition with the safety
DFA, which prunes away the unsafe traces in the learned
PDFA, corrupting the learned probability distributions.

Next, we perform a thorough comparison of the learning
methods by increasing the number of samples.

C. Post-process versus Pre-process Algorithm

Here, the task is similar to the one above, but the goal is to
quantitatively analyze and compare the performances of the
proposed algorithms as the number of samples increases. We
sampled demonstrations randomly from the true PDFA and
used Post-process and Pre-process algorithms to learn PDFAs
with hyperparameter values of α = 0.6 (less aggressive
merge) and α = 5.0 (aggressive merge) to show the extreme
results. We evaluated the resulting PDFAs with respect to the
following metrics: L1 norm of the trace probability errors,
number of states, and computation times. The results are
shown in Figure 5 (all the plots share the same legend).

With respect to the error metric, the Pre-process algorithm
(purple line for α = 0.6 and brown line for α = 5)
consistently performs the best, followed by the Post-process
and then the Vanilla algorithms. It indicates that the Pre-
process algorithm is learning the correct distribution over
the language of the target PDFA. As for the number of states
and computation time metrics, the results indicate that Pre-
process algorithm again performs better and faster than the
others. From these results, we can say that the Pre-process
algorithm is the best performing algorithm. Moreover, its
output PDFA does not violate the safety across all the trials
(checked but not shown in the figures).

D. Planning for Various Robots in different Environments

From the learned PDFAs above, we picked one with a
small L1 error norm. Then, using this PDFA, we planned

Fig. 6: Manipulator completing the learned task of building an arch.

for various robots and environments that are different from
the one the demonstrations were shown in (see Figure 3b).
In all the cases, the computed plans correctly meet the
requirements and preferences. In the environment in Fig-
ure 3d, the lava forces the robot to go to the bottom-right
charging station. Note that the robot avoids water by going
through carpet, which is the preferred behavior. In Figure 3e,
we modified the robot’s dynamics to only allow diagonal
moves. The algorithm is again successful in generating a
satisfying plan without violating the specification. Because
the specification is independent from any robotic systems
and any environments, our framework is robust against the
changes in the environment and robot dynamics.

E. Learning and Planning for Manipulation tasks

To show that our method is not limited to mobile robots,
we considered a manipulation example in Figure 6 (left).
The robot is the Franka Emika Panda manipulator with
7 DoF, and the latent task is to build an arch with two
cylindrical objects as columns and a rectangular box on top.
The abstraction of the robot to a DTS was done according
to [26], [27], which ended up with around 20,000 states.
The robot was given nine demonstrations: five most preferred
(fastest), three mid-length (1.4 times as many actions), and
one very bad demonstration (3 times as many actions). A
PDFA was learned with α = 1.8. The learned PDFA has four
states, and planning took 0.036 seconds. The execution of the
plan by the robot is shown in Figure 6 (middle and right),
which shows that robot successfully learned and executed
the most preferred method of completing the task.

VI. CONCLUSION

In this paper, we presented a new approach to learning
specifications from demonstrations in a form of a PDFA.
Unlike existing work, this method does not require prior
knowledge, is fast, and captures preferences. We showed
how safety constraints can be incorporated in the learn-
ing algorithm, which significantly improves performance.
We also introduced a planning algorithm for specifications
learned in this form, which generates the most preferred
(most probable) plan. Extensive evaluations illustrate the
framework’s flexible and capability of robust knowledge
transfer to various environments and robots.

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330,
2020.

[2] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1–35, 2017.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[4] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[5] A. Paraschos, C. Daniel, J. Peters, G. Neumann, et al., “Probabilistic
movement primitives,” Neurips, 2013.

[6] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in ICML, vol. 1, 2000, p. 2.

[7] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago,
IL, USA, 2008, pp. 1433–1438.

[8] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv:1507.04888, 2015.

[9] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning.” in IJCAI, vol. 7, 2007, pp. 2586–2591.

[10] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA: The MIT Press, 2008.

[11] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 211–236, May
2018.

[12] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho, and S. Se-
shia, “Learning task specifications from demonstrations,” in NeurIPS,
vol. 31, 2018.

[13] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “LTL and beyond: Formal languages for reward function
specification in reinforcement learning,” in Int’l Joint Conference on
Artificial Intelligence, 7 2019, pp. 6065–6073.

[14] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2017, pp. 3834–3839.

[15] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach
to interpretable reinforcement learning for robotic planning,” Science
Robotics, vol. 4, no. 37, 2019.

[16] M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia,
“Logical clustering and learning for time-series data,” in Computer
Aided Verification. Springer, 2017, pp. 305–325.

[17] Z. Xu, S. Saha, B. Hu, S. Mishra, and A. A. Julius, “Advisory temporal
logic inference and controller design for semiautonomous robots,”
IEEE Transactions on Automation Science and Engineering, vol. 16,
no. 1, pp. 459–477, 2018.

[18] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “Telex:
Passive stl learning using only positive examples,” in International
Conference on Runtime Verification. Springer, 2017, pp. 208–224.

[19] A. J. Shah, P. Kamath, S. Li, and J. A. Shah, “Bayesian inference of
temporal task specifications from demonstrations,” 2018.

[20] B. Araki, K. Vodrahalli, T. Leech, C.-I. Vasile, M. D. Donahue, and
D. L. Rus, “Learning to plan with logical automata,” 2019.

[21] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[22] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291–314, 2001.

[23] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces.” in Int. Joint Conf. on Artificial
Intelligence, vol. 13, 2013, pp. 854–860.

[24] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo?
sensor-based temporal logic motion planning,” in Int. Conf. on
Robotics and Automation. Rome, Italy: IEEE, 2007, pp. 3116–3121.

[25] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. Andersson,
“Automatic deployment of autonomous cars in a robotic urban-like
environment (RULE),” in Int. Conf. on Robotics and Automation.
Kobe, Japan: IEEE, 2009, pp. 2055–2060.

[26] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in Int. Conf.
Robotics and Automation. IEEE, May 2015, pp. 346–352.

[27] K. He, M. Lahijanian, E. Kavraki, Lydia, and Y. Vardi, Moshe, “Au-
tomated abstraction of manipulation domains for cost-based reactive
synthesis,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
285–292, Apr. 2019.

[28] S. Verwer and C. A. Hammerschmidt, “Flexfringe: a passive au-
tomaton learning package,” in Intl. Conf. Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 638–642.

	Introduction
	Problem Formulation
	Task Specifications and demonstrations
	Safety Specification
	Preferences
	Robot Model and Plans
	Problem

	Safety Guaranteed PDFA Learning
	Grammatical Inference: PDFA Learning
	Learning with Safety Specification
	Post-process Algorithm
	Safety-Incorporated Learning Algorithm using ``Pre-Processing''

	Planning with PDFA
	Case Studies and Evaluations
	Learning and Planning for Non-Markovian Tasks
	Learning from Small Number of Samples with Safety
	Small number of samples
	Hyperparamter choice and safety

	Post-process versus Pre-process Algorithm
	Planning for Various Robots in different Environments
	Learning and Planning for Manipulation tasks

	Conclusion
	References

