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Abstract— This paper addresses the challenge of planning
a sequence of tasks to be performed by multiple robots
while minimizing the overall completion time subject to timing
and precedence constraints. Our approach uses the Timed
Partial Orders (TPO) model to specify these constraints. We
translate this problem into a Traveling Salesman Problem (TSP)
variant with timing and precedent constraints, and we solve
it as a Mixed Integer Linear Programming (MILP) problem.
Our contributions include a general planning framework for
TPO specifications, a MILP formulation accommodating time
windows and precedent constraints, its extension to multi-
robot scenarios, and a method to quantify plan robustness. We
demonstrate our framework on several case studies, including
an aircraft turnaround task involving three Jackal robots,
highlighting the approach’s potential applicability to important
real-world problems. Our benchmark results show that our
MILP method outperforms state-of-the-art open-source TSP
solvers OR-Tools.

I. INTRODUCTION

Workflow analysis and optimization techniques are of
crucial importance in increasing efficiency across many
domains, from manufacturing to administrative processes.
These workflows are conventionally structured around tasks
that have to be completed subject to precedence and timing
constraints. Such constraints are often defined by the user or
inferred from demonstrations [30], [27]. A recently-proposed
model, Timed Partial Order (TPO) [30], provides a succinct,
understandable, and easily analyzable representation of these
timing constraints. It allows for precedence constraints using
partial orders, and the timing constraints are specified using
clocks that can be reset when events in the workflow happen.
However, the problem of planning task sequences given
environmental constraints and TPO specifications has not
been solved. The main challenge lies in the combination of
environmental constraints that specify how the events in the
workflow can be achieved, timing costs for various events,
and the TPO. All of these are to be taken into account while
planning for such agents. In this work, we develop a planning
framework with TPO specifications against environments
modeled as deterministic transition systems.

Consider the agent operating in an aircraft turnaround task
in Figure 1. Many tasks such as bulk loading/unloading and
refueling can be completed in parallel. Additionally, there are
precedence and timing constraints. For example, deplaning
can only be done after the stair truck is placed, and deplaning
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(a) Top-down view (b) Gridworld

Fig. 1: Aircraft Turnaround Example

takes at least 15 minutes. Catering can only begin after
all passengers have deplaned. To this end, we need a plan
synthesis algorithm that can find the minimum-makespan
plan under the timing and partial-order constraints.

In this paper, we propose a new framework to solve the
time-constrained plan synthesis problem for a single as well
as multiple robots. We employ TPOs as task specifications
and use Deterministic Transition Systems (DTS) as abstrac-
tion models of the robots in their environments. We show
that the planning problem on DTS with TPO specifications
reduces to a type of Traveling Salesman Problem (TSP),
which asks, given a map of cities, to find the lowest cost path
to visit every city once. TSP is well-studied and known to
be NP-hard [9], but there exist tools that use highly-effective
heuristics, allowing fast computations [5]. We formulate our
DTS with TPO planning problem as an instance of TSP with
the addition of timing and precedent constraints [24]. These
constraints introduce the difficulty of applying off-the-shelf
heuristics to our problem. Instead, we solve the problem
as a Mixed Integer Linear Program (MILP), which finds
an optimal solution rapidly for some of our benchmarks.
We also show that for the multi-robot setting, a slight
modification of the MILP can be employed. Furthermore,
we provide an efficient approach to robustness analysis of
the synthesized plans.

The contributions of this work are fourfold: we (i) intro-
duce a general planning framework for TPO specifications
that can be applied to one or more robots, (ii) formulate a
MILP with time windows (global time with respect to the
start event) and precedence constraints (local time between
sub-tasks), and extend it to multiple robots, (iii) propose
a method based on LP to quantify the robustness of the
synthesized plans to capture the lower and upper bounds on
the delays that the plan can tolerate w.r.t. the given TPO, and



(iv) provide a set of illustrative case studies and benchmarks
that empirically show that TPO constraints actually narrow
down the search space, speed up the computation time, and
enable scaling up the algorithm to 160 nodes and 40 robots.
We perform a physical experiment for an aircraft turnaround
task with three Jackal robots that demonstrates the ability of
our approach to plan for practically relevant problems.

II. RELATED WORK

Simple Temporal Networks (STNs) [6] and Timed Au-
tomata (TA) [1] allow us to specify complicated timing spec-
ifications. A comparison of TPOs with related formalisms is
provided by Watanabe et al [30].

Model Checking Problem [1]: The problem focuses solely
on properties such as consistency of the specification model,
neglecting the operating environment. The focus of this
paper involves plan synthesis which combines the timing
specification and the model of the operating environment.

Plan Synthesis Problem: The problem is to find a plan
in the operating environment that satisfies the specification.
This is a common problem in robotics, and many studies
have been conducted for TAs [3] and Signal Temporal Logic
(STL) [19] which can be translated into TAs [20]. In fact, the
synthesis algorithm is known to be exponential in the number
of clocks (Lemma 4.5 and Theorem 7.8 of [1]) and blows up
very quickly in the number of tasks and environmental states.
This makes the algorithm difficult to apply to larger instances
and multi-agent systems [28]. In this paper, we focus on
TPOs that can be turned into linear inequality constraints,
which reduce the complexity of the problem.

Task & Motion Planning Problem: The problem is to
assign (heterogeneous) tasks to robots, involving the problem
of coalition formation [11]. The work in [29] tackles the task-
allocation with timing and precedent constraints by forming
coalitions of robots to accomplish tasks more efficiently.
Similarly, [10] tackles the coalition formation problem to
assign tasks to robots via a min-cost network flow approach.
Our focus is not on allocating (heterogeneous) tasks to
(heterogeneous) robots via forming coalitions, but rather it is
on scheduling tasks that satisfy given formal specifications
(e.g., precedence order, timing constraints, etc.). Others have
also formulated the task allocation problem as a Traveling
Salesman Problem (see [4] for a short survey), but without
precedence and timing constraints. As highlighted in survey
[23], some works have considered timing and precedent con-
straints along with others (multi-agent, hard/soft constraints,
deterministic/stochastic, etc.). However, no work has looked
into local timing dependencies, and more importantly, into
tasks that can be performed at multiple different locations.
The latter creates a choice of not only which robot should
perform the task, but also in which location (for which we
need to formulate a Generalized TSP).

III. PROBLEM FORMULATION

In this section, we first introduce TPOs and present the
single/multi-robot problem formulations.

e2 e3 e4

e1 e6

e5c1 := 0

c2 := 0 c2 ≥ 30

c1 ≤ 60

e1 Airplane Arrived
e2 Place Stairs
e3 Deboarding
e4 Catering
e5 Unloading / Loading
e6 Move out Stairs

Fig. 2: Partial Order for an aircraft turnaround task. Events
e1, . . . , e5 represent events such as “airplane arrived” (e1) or
the commencement of various tasks such as “Catering” (e4).

A. Timed Partial Order (TPO) Specification

TPOs provide a simple yet useful model for specifying
timing constraints. It is closely related to timed automata [2]
and simple temporal networks (STNs) [6]. We provide a
brief summary of TPOs, referring the reader to the paper
by Watanabe et al for further details [30].

TPOs specify a timed sequence of events. These events
may include the start and finish of a given task, or an
environmental event (e.g., the temperature of the water has
exceeded 100◦C). The syntax of TPOs as defined in [30]
does not allow an event to be repeated. Hence, we assume
that repetitions of events are disambiguated by giving them
unique labels.

Let Π = {e1, . . . , en} be the set of events. A timed
trace τ : Π → R≥0 is a mapping τ = {e1 7→ t1, e2 7→
t2, . . . , en 7→ tn}, wherein ti ≥ 0 denotes the timestamp
for event ei ∈ Π. Timed partial orders specify which timed
traces are feasible (allowed) and which ones are not.

Recall that a (strict) Partial Order (PO) P is a relation ≺
on a set Π that is irreflexive, asymmetric, and transitive. We
write ei ⪯ ej if ei ≺ ej or i = j. If ei ⪯ ej holds, then for
any timed trace τ we require that τ(ei) ≤ τ(ej).

Definition 1 (TPO). A timed partial order (TPO) is specified
by a directed-acyclic graph (DAG) φ : (Π,≺) describing a
strict partial order over Π augmented with the following:

1) A finite set of clocks C = {c1, . . . , cm},
2) A guard map g that maps each event ei to a guard

condition, which is a conjunction of the form g(ei) :∧ni

j=1 cj ▷◁ aj , wherein cj ∈ C denotes a clock, ▷◁∈
{≤,≥}, and aj ∈ R≥0 is a non-negative constant, and

3) A reset map R : Π → 2C that associates each event ei
with a subset of clocks R(ei) ⊆ C that are to be reset
to 0 whenever event ei is encountered.

We initialize all the clocks to 0 and the clocks simply run
to measure time. The edges in the TPO specify a precedence
ordering between events. Thus, if the TPO has an edge ei →
ej , we require for any timed trace τ satisfying the TPO that
τ(ei) ≤ τ(ej). Similarly, TPOs associate constraints over the
clocks on each node. These constraints must hold whenever
an event ei occurs and the reset actions corresponding to the
events are executed to update the clock values.

Example 1. Figure 2 shows the TPO specification for the
aircraft turnaround task depicted in Figure 1. The TPO
expresses many partial order constraints. For example, stairs
must be placed (event e2) before passengers deboard event



(e3). After deboarding, the catering service can be started
(e4). Meanwhile, bulk unloading and loading (e5) can be
done in parallel. Only after everything is completed, the
stairs can be removed (e6). The clocks enforce additional
timing constraints. For instance, clock c1 is reset when we
encounter event e1 and event e6 has the constraint c1 ≤ 60.
This enforces the constraints that the stairs must be moved
out within 60 time units of the aircraft arriving. Likewise,
another clock c2 expresses the constraint that catering cannot
be started until at least 30 minutes after the plane arrives
(to allow sufficiently many passengers time to de-board).

Watanabe et al [30] showed that TPOs φ can be translated
into a conjunction of the inequality forms,

φ :
∧

i,j s.t. ei≺ej

(tj − ti) ∈ [ℓj,i, uj,i] ∧
n∧

j=1

tj ∈ [aj , bj ], (1)

wherein ℓi,j ≥ 0, aj ≥ 0 form lower bounds and uj,i, bj ∈
R≥0 ∪ {∞} are upper bounds that can be non-negative real
numbers as well as +∞. The calculation of these bounds
can be easily automated but is not explained further here.
Specifying constraints as inequalities is a simple way to
specify the relationship between events.

B. Single Robot Setting

In this work, we consider both single and multi-robot
cases. For the single agent setting, we assume the agent
operates deterministically in an environment. Abstractions
can be made to represent it as a discrete Determinisitic
Transition System (DTS), similar to [15], [16], [17].

Definition 2 (DTS). A single-robot deterministic transition
system (DTS) is a tuple T = (X,A, x0, δT ,Π, L), where

• X is a finite set of states,
• A is a finite set of controls or actions,
• x0 ∈ X is the initial state,
• δT : X ×A → X is the (partial) transition function,
• ∆T : X×A → R≥0 is the transition duration function,
• L : X → Π ∪ {∅} is a labeling function that maps

each state to an event or an empty set. Without loss of
generality, we assume L(x0) = ∅.

A plan γ = γ0γ1 . . . γn−1 is a sequence of actions, where
γi ∈ A for all 0 ≤ i ≤ n − 1. A valid plan is plan γ that
respects the transition function δT , i.e, δT (si, γi) exists for
all 0 ≤ i ≤ n − 1. We denote the set of all valid plans
by Γ. By executing γ ∈ Γ, the robot generates a trajectory
sγ = sγ0s

γ
1 . . . s

γ
n, where sγ0 = x0 and sγi+1 = δT (s

γ
i , γi).

The observation trace of a trajectory is the sequence of
observed labels, i.e., ργ = L(sγ0)L(s

γ
1) . . . L(s

γ
n). The du-

ration of a trajectory is a sum of the transition durations
D(sγ) =

∑n−1
i=0 ∆T (s

γ
i , γi). This induces a timed trace

τγ = (L(sγ0), t0) . . . (L(s
γ
n), tn) where ti = D(sγ0 , . . . , s

γ
i ),

which is equivalent to the definition of the timed trace in
TPO. We say plan γ ∈ Γ satisfies a TPO if its timed trace
τγ satisfies the inequalities φ in (1), denoted by τγ |= φ.

Example 2. Again consider the aircraft turnout example in
Figure 1b with the red agent in position coordinate (1, 17).

It can be modeled as a transition system, where each cell
of the grid is associated with a state x ∈ X . The agent can
take actions A = {up, down, right, left, }. Then, plan γ =
downdown generates trajectory sγ = (1, 17)(1, 16)(1, 15),
which induces timed trace τγ = (∅, 0)(∅, 1)(ered floor, 2).

Note that DTS can model a variety of different systems
including robotic manipulators [13], [12].

Problem 1. (Single Robot Plan Synthesis) Given a robotic
system as a DTS T with a specification as a TPO φ,
synthesize a valid plan γ∗ ∈ Γ for the robot that satisfies
the TPO in a minimum time duration, i.e.,

γ∗ = argmin
γ∈Γ

D(sγ) s.t. τγ |= φ

We further extend the problem to a multi-agent system.

C. Multi-Robot Setting
We consider the same environment as above but now

with p ∈ N>1 robots, each with its own initial state. We
define a multi-robot DTS (mDTS) by extending T to have
a set of initial states XI = {x1

0, x
2
0, . . . , x

p
0} ⊆ X , i.e.,

T M = (X,A,XI , δT ,Π, L), where X,A, δT ,Π, and L are
as in Def. 2. The notion of valid plan γi ∈ Γi for robot i is
adopted from the single case, and the set of all valid plans
for all robots is denoted by Γ =

⋃p
i=1 Γ

i.
Similar to the single robot case, from initial state xi

0 ∈ XI ,
plan γi induces a trajectory sγ

i

, and a timed trace τγ
i

, and
timetamps tγ

i

. We assume that when a robot executes action
a ∈ A at state x ∈ X , it remains in x for the entire duration
∆T (x, a) before transitioning to x′ = δT (x, a). Then, the
induced trajectory can be viewed as a piecewise function of
time. With an abuse of notation, we use sγ

i

: R≥0 → X

to denote this function, where sγ
i

(t) is the state visited by
trajectory sγ

i

at time t. We say two trajectories sγ
1

and
sγ

2

are non-colliding if, for all t ≤ max{D(sγ
1

), D(sγ
2

)},
sγ

1

(t) ̸= sγ
2

(t). We define a timed trace τγ
1...γp

of the multi-
robot system to be the union of the individual robot’s timed
traces. A timed trace is also viewed as a set with the order
relation induced by the timestamps.

Then, the multi-robot problem is to find plans for the p
robots that generate non-colliding trajectories with the timed
trace τγ

1,...,γp

that satisfies the TPO specification with a
minimum time duration.

Problem 2 (Multi-Robot Plan Synthesis). Given a system
of p robots as a mDTS T M and a TPO specification φ,
synthesize plans γ1∗, . . . , γp∗ ∈ Γ under which the multi-
robot system satisfies the TPO in a minimum time duration:

γ1∗, . . . , γp∗ = argmin
γ1...γp∈Γ

max{D(sγ
1

), . . . , D(sγ
p

)}

subject to

τγ
1...γp

|= φ

sγ
j

and sγ
j

are non-colliding ∀γi, γj ∈ Γ.

Note that Problems 1 and 2 ask for a satisfying plan that
minimizes the maximum duration of the induced trajectories,
which is also known as the makespan of the plan.



IV. APPROACH

In this section, we explain how a Problem 1 can be formu-
lated as an instance of the Generalized Traveling Salesman
Problem (GTSP), but with timing and precedent constraints.
These additional constraints introduce difficulty in applying
existing heuristics to our problem out of the box. In this
paper, we first focus on the Mixed Integer Linear Program
(MILP) formulation. We first introduce the problem of GTSP
and later discuss how the problem can be translated into the
graph representation of GTSP.

A. Problem 1 as Generalized Traveling Salesman Problem

The Generalized Traveling Salesman Problem [22] is the
problem of finding the minimum cost path that visits exactly
one city from given subsets of cities. GTSP is known to
be an NP-hard problem, and it is a well-studied problem in
combinatorial optimization research. There are many existing
methods to obtain either exact or approximate solutions to
this problem [25]. We want to translate Problem 1 into a
GTSP, more specifically, GTSP with Time-Windows and
Precedence Relations (GTSP-TWPR) [21] so that we can
utilize the existing approaches and extend the problem for-
mulation. Formally, GTSP-TWPR is defined as follows.

Definition 3 (GTSP-TWPR). Let G = (V,E) be a weighted
directed graph with vertices V and edges E = V ×V . Node
vi ∈ V is associated with a vertex cost di, which represents
the time delay at that vertex. Edge (vi, vj) ∈ E is assigned
a time cost dij , which is the time required to move from vi
to vj . Node v0 ∈ V is designated as the depot with d0 = 0.

The problem seeks a tour that visits some of the vertices
vi0 , vi1 , . . . , vim with starting and ending at the depot, vi0 =
vim = v0, while minimizing the total time of the tour:∑m

j=0 dij +dij ,ij+1 . Note that we can set di,0 = 0 for all i if
return to the depot is not required for the problem. We refer to
this total time as the makespan of the tour. The tour is subject
to the following additional constraints: (a) We partition the
set V ∪ {v0} into disjoint subsets V1, V2, . . . , Vk . The TSP
tour is required to visit exactly one node from each subset Vi.
Let ti be the time at which the node in the set Vi is visited
by our tour. (b) We require that li ≤ ti ≤ ui for a time
interval [li, ui] provided as input. (c) We specify qualitative
precedence constraints of the form Vi ≺ Vj that specifies that
the tour must visit a node in Vi before it visits some node
in Vj . (d) Whenever we have Vi ≺ Vj , we require ti ≤ tj .
Additionally, we may also specify quantitative relative time
window [lij , uij ] requiring that lij ≤ tj − ti ≤ uij .

We show how Problem 1 is mapped to a GTSP-TWPR.

Definition 4 (Translation of Problem 1 to GTSP-TWPC). We
abstract DTS T and the TPO φ to a GTSP-TWPR graph, by
defining the set of node V = {x0} ∪ {x ∈ X | L(x) ̸= ∅}
to be the set of states with non-empty labels as well as x0.
Then, the depot node v0 = x0, and subset Vi is a set of
states whose label is event ei, i.e., Vi = {x ∈ X|L(x) =
ei}. A directed edge (xi, xj) is added whenever L(xi) ⪯
L(xj) or the events L(xi), L(xj) can happen in parallel.

The edge cost dij between two states xi and xj is defined
by the trajectory duration D(s, γ) where s is the shortest
path between xi and xj on T , i.e., s = s0s1 . . . sn that
induces a trace L(xi)∅...∅L(xj). Likewise, if state xi in T
has a self-transition under action a with time cost ∆T (xi, a),
then we set di = ∆T (xi, a) as the vertex cost for node xi;
otherwise, we set di = 0.

Edge costs are calculated by running an all-shortest path
algorithms such as Floyd-Warshall algorithm [7]. We note
that our method can be extend to a continuous space kino-
dynamical robots by running Stable Sparse RRT (SST) [18]
to obtain the shortest paths between states. Generally, this
is run once for environments where locations are fixed, e.g.,
manufacturing factories, hospitals, etc.

B. MILP Formulation

1) Single Robot: We solve Problem 1 on graph G exactly
using a Mixed Integer Linear Programming (MILP) formu-
lation. The formulation is shown in Figure 3. Recall that
n = |Π| is the number of events, and per our construction of
G, it is also the number of the subsets V1, . . . , Vn. We define
the square bracket [k] to represent the set {1, . . . , k}. Let N
be the number of nodes N = |V |, yij be an integer variable
indicating the active edge i → j, and τi be the continuous
time variable that represents the completion of the ith event,
where τN+1 represents the time coming back to the depot.
We additionally introduce the set V0 = {v0} with the depot
node and the indices I = {0} to simplify the formulation.

Note that the continuous variables include N + 1th vari-
able τN+1 that represents the time at the end of the tour.
Constraint (2a) expresses that the number of incoming and
outgoing edges must be equal at every node. Constraints
(2b) and (2c) represent that there is only one incoming and
one outgoing edge for each subset. Together with the first
constraint, we ensure that the incoming/outgoing edge to a
particular subset Vi must involve the same node vi ∈ Vi.
Constraint (2d) represents all the TPO constraints, and (2e)
delays the jth event by di,j + dj from ith event only if the
edge is activated (yi,j = 1). Constraint (2f) delays N + 1th

visit (makespan) by the edge cost between [N ] nodes back
to the initial nodes I . =⇒ represents “implies” and can be
expressed by using the Big-M method [31].

A tour can be obtained by following the enabled edges
yi,j = 1 from the depot node.

2) Multiple Robots: For the multi-robot setting, we con-
struct graph G in a similar manner as the single-robot case,
except that for each initial state xi

0 ∈ X0, we add a depot
node vi0 and its associated subset V i

0 to G. For simplicity,
we redefine the indices I = {01, . . . , 0p} to denote the depot
nodes and their subsets. The MILP formulation then becomes
exactly the same as that of the single-agent case in Figure 3.
In practice, we avoided introducing new depots, but instead,
we changed the number of incoming and outgoing edges at
the initial node v0 to prevent the increase in the number
of integer variables. The right-hand sides of (2b) and (2c)
equate to the number of robots starting at V0.



min τN+1 s.t.∑
i

yi,j −
∑
k

yj,k = 0, j ∈ I ∪ [N ] (2a)∑
vj∈Vl

∑
i

yi,j = 1, l ∈ I ∪ [n] (2b)

∑
vj∈Vl

∑
k

yj,k = 1, l ∈ I ∪ [n] (2c)

τj − τi ▷◁ ai,j , tj , ti, ai,j ∈ φ (2d)
yi,j = 1 =⇒ τj − τi ≥ di,j + dj , i ∈ I ∪ [N ],

j ∈ [N ] (2e)
yi,j = 1 =⇒ τN+1 − τi ≥ di,j , i ∈ [N ], j ∈ I (2f)
yi,j ∈ {0, 1}, i, j ∈ I ∪ [N ] (2g)
τi ≥ 0, i ∈ I ∪ [N + 1] (2h)

Fig. 3: MILP formulation of the GTSP-TWPR problem.
Notation [N ] = {1, . . . , N}.

The resulting tours minimize the makespan, and their
induced timed trace satisfies the TPO specification. However,
when the tours are mapped to plans on T M , they are not
guaranteed to produce non-colliding trajectories. Hence, they
need to be check for collisions as a post process. If a collision
is detected, then we repair the plans by introducing delays
to the individual plans as in [14]. Acceptable limits on these
delays can be calculated using a robustness analysis. Another
approach is to resolve conflicts via the Conflict-Based Search
(CBS) method for multi-agent as in [26].

C. Robustness Analysis

Once a tour is returned by our MILP formalism, it is now
possible to understand how robust the tour is to variations
in the edge and node costs or in other words, variations in
the delays associated with a given node or an edge between
two locations. Such delays is common during plan execution.
Consider a single agent tour with edge costs: v0

d01−−→ v1
d12−−→

v2 · · · vm−1
dm−1,0−−−−→ v0. Let di be the node cost of vi with

d0 = 0. Our goal is to characterize all possible timing
variations δ(dij) to the edge costs and δ(dj) to the node costs
such that the TPO constraints will continue to hold. To this
end, note that the nominal visit time for node vi in the tour
is given by ti =

∑i−1
j=0

(
dj+dj,j+1

)
for i ∈ [1,m−1] while

the visit time taking into account the unknown variations in
dj , di,j will be ti =

∑i−1
j=0

(
dj+dj,j+1+δ(dj)+δ(dj,j+1)

)
.

Robustness analysis seeks a uniform bound ϵ such that
whenever each |δ(dj)| ≤ ϵ and |δ(di,j)| ≤ ϵ, the TPO
constraints are guaranteed to hold. To compute such a limit
ϵ, we formulate the LP:

max ϵ

s.t. ti =
∑i−1

j=0

(
dj + dj,j+1 + δ(dj) + δ(dj,j+1)

)
for i = 1, . . . ,m− 1

ti − tj ▷◁ ai,j , TPO constraints ti, dj , ai,j
ϵ ≤ δ(dj)
ϵ ≤ δ(di,j)

The LP above is always feasible and its optimal solu-
tion ϵ denotes a uniform bound on the timing variations
δ(dj), δ(di,j) such that as long as |δ(dj)| ≤ ϵ and |δ(di,j)| ≤
ϵ for each node and edge delay, the tour continues to
be a feasible solution that satisfies the TPO constraints.
The formulation for a multi-robot tour is almost identical
except that the times ti are computed differently for each
robot. Unfortunately, trying to incorporate the robustness
analysis as part of the solution to the TSP itself results in
a robust optimization problem which often requires more
expensive approaches to solve. Our future work will consider
incrementally eliminating tours that fail a robustness criterion
by adding a “blocking” constraint to force the MILP solver
to return back with a different tour.

V. EXPERIMENTS

In this section, we evaluate our algorithm for planning
with TPO specification for single and multiple robots on
various case studies. First, we demonstrate how different
timing constraints of TPO cause different robot behaviors.
Then, we illustrate scalability of the algorithm on a set
of benchmarks. Lastly, we return to the aircraft turnaround
example and show a physical experiment to demonstrate the
applicability of the approach to a more realistic scenario.

A. Illustrative Case Studies

We demonstrate our method on a gridworld environment
in Figure 4 with multiple colored locations and two TPO
tasks: with and without timing constraints. For the simple
task, the robot must visit every color in any order. It has
the option of visiting any location of the same color but
must find a plan with a minimum makespan time. We ran
the algorithm without any constraints and its trajectory is
shown in orange in Figure 4a. The robot first visits red, green,

(a) Blue/Orange=With/out φ (b) Multi-robot trajectories

Fig. 4: Gridworlds with synthesized plans
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c4 := 0

c3 ≥ 35 ∧ c4 ≥ 10

(b) TPO2

Fig. 5: TPO Specifications for the case studies.



(a) Experimental Setup (b) Trajectory 1/3 (c) Trajectory 2/3 (d) Trajectory 3/3

Fig. 6: Experimental setup of the aircraft turnaround task (see attached video: https://youtu.be/WUuWFlOoKW8).

purple, yellow, blue, and grey in order. The second task is
TPO1 in Figure 5a. The robot visited grey, green, purple,
yellow, blue and red in order. Observe that the robot now
visits the grey first and the red last due to the constraints.
In Figure 4b, we extend to two robots the same TPO1 task.
The result was two trajectories for the two robots that satisfy
TPO1. The trajectories are long, since red has to be visited
between 50 to 60 time units.

B. Benchmarks

Here, we explore how our algorithm scales with the
increasing number of states with non-empty labels, timing
constraints, and number of robots. We generated a random
set of events varying in number from 5 to 80 in a 30-
by-30 gridworld environment. We incrementally add timing
constraints of the form di,j+dj−∆t ≤ tj−ti ≤ di,j+dj+∆t
where ∆t > 0 is a constant padding to see how the overall
solution time depends on the number of constraints we add
and the “tightness” of these constraints.

We ran benchmarks with varying the number of timing
constraints (constraints involving p = 25, 50, 75, 100% of all
TPO edges), ∆t = 10, 30, 50, and the number of robots of
1, 10, 20, 30, and 40. We compared our method to heuristic
approaches implemented in OR-Tools Routing Libraray [8].
The time padding ∆t and the percentage of the number
of edges p did not have significant effects on the results.
Figure 7 shows the result at when p = 25% and ∆t = 30.

Fig. 7: Benchmark results. The x-axis is (#nodes, solver) and
the y-axis is computation time in seconds in log scale. The
timeout is set to 600 seconds. The colors of the bars indicate
the number of robots (see legend).

As the number of nodes increases, the problem gets more
difficult to solve, taking more time to find the optimal
solution. Also, the computation time mostly stays the same
as we increase the number of robots. Interestingly, the OR-
Tools did not perform well compared to MILP. This is be-
cause the heuristics are disabled when unexpected additional
constraints (e.g., local timing constraints) are added. Instead,
they use constraint programming to solve the problem, which
is slower than the Branch and Bound method employed in
the MILP solver.

Also, the algorithm easily scaled up to 80 nonempty-label
states as shown in the figure. We further ran the stretch test
with a timeout of 30 minutes, and MILP was able to solve
up to 160 nodes within 182± 102 seconds excluding a case
(out of 60 runs) when it hit the timeout. It took 210 ± 232
seconds including the timeout.

C. Aircraft Turnaround

We consider the aircraft turnaround example in Fig-
ure 1 with robots as ground staff. The task TPO2 in
Figure 5b, specifies vehicle movement, refuel, and bulk
loading/unloading. The goal is to find the most efficient plans
for completing the task according to TPO2. In Figure 6, we
show the plans of all robots. Robot 1 places the stair truck,
refueling vehicle, and moves out the stair truck. Robot 2
performs bulk unloading/loading and then moves out the
refueling vehicle. Robot 3 performs the catering services.
Almost all robots finish their assigned events at the same
time. The overall makespan was 59 time units. We also
repeated the same case study for a single robot from various
initial states and obtain makespans 152, 155, 163 time units.
A video of this experiment accompanies the submission1.

VI. CONCLUSIONS
We introduce a general framework for planning under

Timed Partial Order (TPO) specifications for multiple robots.
Our solution maps the task allocation problem to the Gen-
eralized Traveling Salesman Problem (GTSP) with time
windows and precedence constraints which we solve by a
Mixed-Integer Linear Program (MILP). Our evaluations of
the algorithm on various case studies demonstrate the time-
effectiveness of our plans for up to 40 robots with 160 nodes.

For future work, we plan to investigate variants of the
dynamic task assignment problem under TPO specifications
and to consider robustness and contingencies in the MILP
formulation.

1Video: https://youtu.be/WUuWFlOoKW8

https://youtu.be/WUuWFlOoKW8
https://youtu.be/WUuWFlOoKW8
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